Loj

Loj is a category formed from Lojban syntax. Specifically, it is the poset (WP, nLab) whose:

  • objects are equivalence classes of closed well-formed bridi, and
  • arrows are implications from one bridi to another.

To read Metamath theorems as statements about Loj, encode:

  • objects as members of the {broda} series
  • arrows from X to Y as {ganai X gi Y}

Table of proofs

Metamath statementLojban bridiWhat it means
id{ganai broda gi broda}identity arrows exist
syl{ganai broda gi brode} & {ganai brode gi brodi} => {ganai broda gi brodi}composition is allowed and well-typed
ax-ge-le{ganai ge broda gi brode gi broda}conjunction is a left lower bound
ax-ge-re{ganai ge broda gi brode gi brode}conjunction is a right lower bound
ga-lin{ganai broda gi ga broda gi brode}disjunction is a left upper bound
ga-rin{ganai broda gi ga broda gi broda}disjunction is a right upper bound
garii{ganai broda gi brode} & {ganai brodi gi brode} => {ganai ga broda gi brodi gi brode}disjunction is the least upper bound

To Do

  • Implication should form a partial order; we're missing antisymmetry
    • {ganai broda gi brode} & {ganai brode gi broda} => {pa du'u broda kei du pa du'u brode}
  • Implication, conjunction, disjunction should form a lattice
    • Missing ge-ind: deductive form of ax-ge-in
    • And also a distributive lattice?
      • {ge broda gi ga brode gi brodi} => {ga ge broda gi brode gi brodi}
    • Easy implications of being a lattice:
      • Idempotence: {ge/ga broda gi broda} => {broda}
      • Commutativity: {ge/ga broda gi brode} => {ge/ga brode gi broda}
      • Associativity: {ge/ga broda gi ge/ga brode gi brodi} => {ge/ga ge/ga broda gi brode gi brodi}
      • Absorption: {ge/ga broda gi ga/ge broda gi brode} => {broda}